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Overview

Integrals are sometimes easier to evaluate if we change to polar
coordinates.

We discuss in the lecture how to accomplish the change and how to
evaluate integrals over regions whose boundaries are given by polar
equations.
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Definition of Polar Coordinates

To define polar coordinates, we first fix an origin O (called the pole) and
an initial ray from O. Then each point P can be located by assigning to
it a polar coordinate pair (r , θ) in which r gives the directed distance
from O to P and θ gives the directed angle from the initial ray to ray OP.

To define polar coordinates for the plane, we start with an origin, called
the pole, and an initial ray.
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Polar coordinates are not unique

As in trigonometry, θ is positive when measured counterclockwise and
negative when measured clockwise. The angle associated with a given
point is not unique.

While a point in the plane has just one pair of Cartesian coordinates, it
has infinitely many pairs of polar coordinates.
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Polar coordinates are not unique : Example

The point 2 units from the origin along the ray θ = π/6 has polar
coordinates r = 2, θ = π/6.

It also has coordinates r = 2, θ = −11π/6.
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Polar coordinates can be negative r -values : Example

In some situations we allow r to be negative. The point P(2, 7π/6)
can be reached by turning 7π/6 radians counterclockwise from the initial
ray and going forward 2 units. It can also be reached by turning π/6
radians counterclockwise from the initial ray going backward 2 units. So
the point also has polar coordinates r = 2, θ = π/6.
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Polar Equations and Graphs

The equation
r = a

represents circle of radius |a| centered at O.

The equation
θ = θ0

represents line through O making an angle θ with
the initial ray.
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Equatins Relating Polar and Cartesian Coordinates

The Cartesian and polar coordinate systems are related by the following
equations.

x = r cos θ

y = r sin θ

r2 = x2 + y2

tan θ =
y

x
.

The first two of these equations uniquely determine the Cartesian
coordinates x and y given the polar coordinates r and θ. On the other
hand, if x and y are given, the third equation gives two possible choices
for r (a positive and a negative value). For each (x , y) 6= (0, 0), there is a
unique θ ∈ [0, 2π) satisfying the first two equations, each then giving a
polar coordinate representation of the Cartesian point (x , y).
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Equivalent Expressions

The following are some equivalent equations expressed in terms of both
polar coordinates and Cartesian coordinates

Polar Equation Cartesian Equivalent
r cos θ = 2 x = 2

r2 cos θ sin θ = 4 xy = 4

r2 cos2 θ − r2 sin2 θ = 1 x2 − y2 = 1

r = 1 + 2r cos θ y2 − 3x2 − 4x − 1 = 0

r = 1− cos θ x4 + y4 + 2x2y2 + 2x3 + 2xy2 − y2 = 0
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Graphing in Polar Coordinates : Symmetry Tests for Polar
Graphs

We now discuss techniques for graphing equations in polar coordinates
using symmetries.

Symmetry about the x-axis:

If the point (r , θ) lies on the graph, then the point (r ,−θ) or (−r , π,−θ)
lies on the graph.
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Graphing in Polar Coordinates : Symmetry Tests for Polar
Graphs

Symmetry about the y-axis:

If the point (r , θ) lies on the graph, then the point (r , π,−θ) or (−r ,−θ)
lies on the graph.
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Graphing in Polar Coordinates : Symmetry Tests for Polar
Graphs

Symmetry about the origin:

If the point (r , θ) lies on the graph, then the point (−r , θ) or (r , θ+ π) lies
on the graph.
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Graph the curve r = 1− cos θ
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Graph the curve r = 1− cos θ
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Graph the curve r 2 = 4 cos θ
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A Technique for Graphing

One way to graph a polar equation r = f (θ) is to make a table of
(r , θ)-values, plot the corresponding points, and connect them in order of
increasing θ. This can work well if enough points have been plotted to
reveal all the loops and dimples in the graph.

Another method of graphing that is usually quicker and more reliable is to

(a) first graph r = f (θ) in the Cartesian rθ-plane,

(b) then use the Cartesian graph as a “table” and guide to sketch the
polar coordinate graph.

This method is better than simple point plotting because the first
Cartesian graph, even when hastily drawn, shows at a glance where r is
positive, negative, and nonexistent, as well as where r is increasing and
decreasing.
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Graph the curve r 2 = sin 2θ

We begin by plotting r2 (not r) as a function of θ in the Cartesian
r2θ-plane.
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Graph the curve r 2 = sin 2θ

We began by plotting r2 (not r) as a function of θ in the Cartesian
r2θ-plane. We pass from there to the graph of r = ±

√
sin 2θ in the

rθ-plane, and then draw the polar graph.
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Graph the curve r 2 = sin 2θ

The graph covers the final polar graph twice. We could have managed with
either loop alone, with the two upper halves, or with the two lower halves.

The double covering does no harm, however, and we actually learn a litter
more about the behaviour of the function this way.
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Integrals in Polar Coordinates

When we defined the double integral of a function over a region R in the
xy -plane, we began by cutting R into rectangles whose sides were parallel
to the coordinate axes.

These were the natural shapes to use because their sides have either
constant x-values or constant y -values.

In polar coordinates, the natural shape is a “polar rectangle” whose sides
have constant r - and θ-values.
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Integrals in Polar Coordinates

Suppose that a function
f (r , θ)

is defined over a region R that is bounded by the rays

θ = α and θ = β

and by the continuous curves

r = g1(θ) and r = g2(θ).
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Integrals in Polar Coordinates

Suppose also that
0 ≤ g1(θ) ≤ g2(θ) ≤ a

for every value of θ between α and β. Then R lies in a fan-shaped region
Q defined by the inequalities

0 ≤ r ≤ a and α ≤ θ ≤ β.
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Integrals in Polar Coordinates

We cover Q by a grid of circular arcs and rays.

The arcs are cut from circles centered at the origin, with radii

∆r , 2∆r , . . . , m∆r ,

where ∆r = a/m.

The rays are given by

θ = α, θ = α + ∆θ, θ = α + 2∆θ, . . . , θ = α + m′∆θ = β,

where ∆θ = (β − α)/m′.

The arcs and rays partition Q into small patches called “polar rectangles.”
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Integrals in Polar Coordinates

We number the polar rectangles that lie inside R (the order does not
matter), calling their areas

∆A1,∆A2, . . . ,∆An.

We let (rk , θk) be any point in the polar rectangle whose area is ∆Ak .

We then form the sum

Sn =
n∑

k=1

f (rk , θk)∆Ak .

P. Sam Johnson Double Integrals in Polar Form 24/67



Integrals in Polar Coordinates

If f is continous throughout R, this sum will approach a limit as we refine
the grid to make ∆r and ∆θ go to zero.

The limit is called the double integral of f over R. In symbols,

lim
n→∞

Sn =

∫∫
R

f (r , θ) dA.

To evaluate this limit, we first have to write the sum Sn in a way that
expresses ∆Ak in terms of ∆r and ∆θ.

For convenience we choose rk to be the average of the radii of the inner
and outer acrs bounding the kth polar rectangle ∆Ak .
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Integrals in Polar Coordinates

The radius of the inner arc bounding ∆Ak is then rk − (∆r/2).

The radius of the outer arc is rk + (∆r/2).
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Integrals in Polar Coordinates

The area of a wedge-shaped sector of a circle having radius r and angle θ is

A =
1

2
θ r2,

as can be seen by multiplying πr2, the area of the circe, by θ/2π, the
fraction of the circle’s area contained in the wedge.

So the areas of the circular sectors subtended by these arcs at the origin are

Inner radius :
1

2

(
rk −

∆r

2

)2
∆θ.

Outer radius :
1

2

(
rk +

∆r

2

)2
∆θ.
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Integrals in Polar Coordinates

Therefore,

∆Ak = area of large sector − area of small sector

=
∆θ

2

[(
rk +

∆r

2

)2
−
(
rk −

∆r

2

)2]
=

∆θ

2
(2rk ∆r)

= rk ∆r ∆θ.

Combining this result with the sum defining Sn gives

Sn =
n∑

n=1

f (rk , θk) rk ∆r ∆θ.
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Fubini’s Theorem

As n→∞ and the values of ∆r and ∆θ approach zero, these sums
converge to the double integral

lim
n→∞

Sn =

∫∫
R

f (r , θ)r dr dθ.

A version of Fubini’s Theorem says that the limit approached by these
sums can be evaluated by repeated single integrations with respect to r
and θ as ∫∫

R

f (r , θ) r dA =

∫ θ=β

θ=α

∫ r=g2(θ)

r=g1(θ)
f (r , θ) r dr dθ.

The procedure for finding limits of integration in rectangular coordinates
also works for polar coordinates.
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Finding Limits of Integration

To evaluate

∫∫
R

f (r , θ) dA over a region R in polar coordinates,

integrating first with respect to r and then with respect to θ, take the
following steps.

1. Sketch: Sketch the region and label the bounding curves.

2. Find the r-limits of integration: Imagine a ray L from the the
origin cutting through R in the direction of increasing r . Mark the
r -values where L enters and leaves R. These are the r -limits of
integration. They usually depend on the angle θ that L makes with
the positive x-axis.

3. Find the θ-limits of integration: Find the smallest and largest
θ-values that bound R. These are the θ-limits of integration.
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Finding Limits of Integration
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Example 1.

Find the limits of integration for integrating f (r , θ) over the region R that
lies inside cardioid

r = 1 + cos θ

and outside the circe r = 1.
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Area in Polar Coordinates

If f (r , θ) is the constant function whose value is 1, then the integral of f
over R is the area of R. The area of a closed and bounded region R in the

polar coordinate plane is A =

∫∫
R

r dr dθ.

Example 2.

Find the area enclosed by one leaf of curve given by r2 = 4 cos 2θ.
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Changing Cartesian Integrals into Polar Integrals

The procedure for changing a Cartesian integral
∫∫
R

f (x , y) dx dy into a

polar integral has two steps. First substitute x = r cos θ and y = r sin θ,
and replace dx dy by r dr dθ in the Cartesian integral. Then supply polar
limits for the boundary of R. The Cartesian integral then becomes∫∫

R

f (x , y) dx dy =

∫∫
G

f (r cos θ, r sin θ) r dr dθ,

where G denotes the region of integration in polar coordinates. This is like
the substitution method (to variables to substitute).

Notice that dx dy is not replaced by dr dθ but by r dr dθ.
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Example 3.

Find the polar moment of inertia about the orgin of a thin place of density

δ(x , y) = 1

bounded by the quarter circle x2 + y2 = 1 in the first quadrant.
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Example 4.

Evaluate

∫∫
R

ex
2+y2

dy dx, where R is the semicircular region bounded by

the x-axis and the curve y =
√

1− x2.
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Example 5.

Evaluate the integral ∫ 1

0

∫ √1−x2
0

(x2 + y2) dy dx .

Solution : Integration with respect to y gives∫ 1

0

(
x2
√

1− x2 +
(1− x2)3/2

3

)
dx ,

an integral difficult to evaluate without tables.

Things go better if we change the original integral to polar coordinates.
The region of integration in Cartesian coordinates is given by the
inequalities 0 ≤ y ≤

√
1− x2 and 0 ≤ x ≤ 1, which correspond to the

interior of the unit quarter circle x2 + y2 = 1 in the first quadrant.
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Solution (contd...)

Substituting the polar coordinates x = r cos θ, y = r sin θ, 0 ≤ θ ≤ π/2
and 0 ≤ r ≤ 1, and replacing dx dy by r dr dθ in the double integral, we
get

∫ 1

0

∫ √1−x2

0
(x2 + y2) dy dx =

∫ π/2

0

∫ 1

0
(r2)r dr dθ =

∫ π/2

0

[
r4

4

]r=1

r=0

dθ =

∫ π/2

0

1

4
dθ =

π

8
.

Why is the polar coordinate transformation so effective here? One reason
is that x2 + y2 simplifies to r2. Another is that the limits of integration
become constants.
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Example 6.

Find the volume of the solid region bounded above by the paraboloid
z = 9− x2 − y2 and below by the unit circle in the xy-plane.

Solution :

The region of integration R is the unit cir-
cle x2 + y2 = 1, which is described in polar
coordinates by r = 1, 0 ≤ θ ≤ 2π.

The solid region is shown in the figure.

The volume is given by the double integral∫∫
R

(9− x2 − y2) dA =

∫ 2π

0

∫ 1

0
(9− r2)r dr dθ =

17π

2
.
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Example 7.

Using polar integration, find the area of the region R in the xy-plane
enclosed by the circle x2 + y2 + 4, above the line y = 1, and below the
line y =

√
3x.

Solution :

The area of the region R is∫∫
R

dA =

∫ π/3

π/6

∫ 2

csc θ
r dr dθ =

π −
√

3

3
.
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Regions in Polar Coordinates

Exercise 8.

In the following exercises, describe the given region in polar coordinates.

1.

2.

3. The region enclosed by the
circle x2 + y2 = 2x.

4.

5.

6. The region enclosed by the
semicircle x2 + y2 = 2y , y ≥ 0.
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Solution for the Exercise 8

1. x2 + y2 = 12 ⇒ r = 1, x2 + y2 = 42 ⇒ r = 4⇒ −π
2
≤ θ ≤ π

2
, 1 ≤ r ≤ 4

2. x = 1⇒ r = sec θ, y =
√
3x ⇒ θ = π

3
⇒ 0 ≤ θ ≤ π

3
, 0 ≤ r ≤ sec θ

3. x2 + y2 = 2x ⇒ r = 2 cos θ ⇒ −π
2
≤ θ ≤ π

2
, 0 ≤ r ≤ 2 cos θ

4. x2 + y2 = 22 ⇒ r = 2, x = 1⇒ r = sec θ; 2 = sec θ ⇒ θ = π
3
or θ = −π

3
⇒ −π

3
≤ θ ≤

π
3
, sec θ ≤ r ≤ 2

5. x2 + y2 = 12 ⇒ r = 1, x = 2
√
3⇒ r = 2

√
3 sec θ, y = 2⇒ r = 2 csc θ; 2

√
3 sec θ =

2 csc θ ⇒ θ = π
6
⇒ 0 ≤ θ ≤ π

6
, 1 ≤ r ≤ 2

√
3 sec θ, π

6
≤ θ ≤ π

2
, 1 ≤ r ≤ 2

√
3 csc θ

6. x2 + y2 = 2y ⇒ r = 2 sin θ ⇒ 0 ≤ θ ≤ π, 0 ≤ r ≤ 2 sin θ
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Evaluating Polar Integrals

Exercise 9.

In the following exercises, change the Cartesian integral into an equivalent
polar integral. Then evaluate the polar integral.

1.

∫ 1

−1

∫ √1−x2

0
dy dx

2.

∫ a

−a

∫ √a2−x2

−
√

a2−x2
dy dx

3.

∫ 2

0

∫ x

0
y dy dx

4.

∫ √3

1

∫ x

1
dy dx

5.

∫ 1

−1

∫ √1−x2

−
√

1−x2

2

(1 + x2 + y2)2
dy dx

6.

∫ ln 2

0

∫ √(ln 2)2−y2

0
e
√

x2+y2 dx dy

7.

∫ 1

−1

∫ √1−y2

−
√

1−y2
ln(x2 + y2 + 1) dx dy

8.

∫ 2

1

∫ √2x−x2

0

1

(x2 + y2)2
dy dx
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Solution for the Exercise 9

1.
∫ 1
−1

∫√1−x2

0 dy dx =
∫ x
0

∫ 1
0 r dr dθ = 1

2

∫ x
0 dθ = π

2

2.
∫ a
−a

∫√a2−x2√
a2−x2

dy dx =
∫ 2x
0

∫ a
0 r dr dθ = a2

2

∫ 2x
0 dθ = πa2

3.
∫ 2
0

∫ x
0 = y dy dx =

∫ x/4
0

∫ 2 sec θ
0 r2 sin θ dr dθ = 8

3

∫ x/4
0 tan θ sec2 θ dθ = 4

3

4.
∫√3
1

∫ x
1 dy dx =

∫ x/4
x/6

∫√3 sec θ
csc θ r dr dθ =

∫ x/4
x/6

(
3
2
sec2 θ − 1

2
csc2 θ

)
dθ =[

3
2
tan θ + 1

2
cot θ

]x/4
x/6

= 2−
√
3

5.
∫ 1
−1

∫√1−x2√
1−x2

2
(1+x2+y2)

dy dx = 4
∫ x/2
0

∫ 1
0

2x
(1+x2)2

dr dθ = 4
∫ x/2
0

[
− 1

1+x2

]1
0
dθ =

2
∫ x/2
0 dθ = π

6.
∫ ln 2
0

∫√(ln 2)2−y2

0 e
√

x2+y2dx dy =
∫ x/2
0

∫ ln 2
0 rex dr dθ =

∫ x/2
0 (2 ln 2− 1)dθ =

π
2
(2 ln 2− 1)

7.
∫ 1
−1

∫√1−y2

−
√

1−y2
ln(x2 + y2 + 1)dx dy = 4

∫ x/2
0

∫ 1
0 ln(r2 + 1)r dr dθ = 2

∫ x/2
0 (ln 4− 1)dθ =

π(ln 4− 1)

8.
∫ 2
1

∫√2x−x2

0
1

(x2+y2)

2
dy dx =

∫ π/4
0

∫ 2 cos θ
sec θ

1
r4
r dr dθ =

∫ π/4
0

[
− 1

2x2

]2 cos θ
sec θ

dθ ==∫ π/4
0

(
1
2
cos2 θ − 1

8
sec2 θ

)
dθ =

[
1
4
θ + 1

8
sin 2θ − 1

8
tan θ

]π/4
0

= π
16
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Exercises

Exercise 10.

In the following exercises, sketch the region of integration and convert
each polar integral or sum of integrals to a Cartesian integral or sum of
integrals. Do not evaluate the integrals.

1.

∫ π/2

0

∫ 1

0
r3 sin θ cos θ dr dθ

2.

∫ π/4

0

∫ 2 sec θ

0
r5 sin2 θ dr dθ

3.

∫ tan−1 4
3

0

∫ 3 sec θ

0
r7 dr dθ+

∫ π/2

tan−1 4
3

∫ 4 csc θ

0
r7 dr dθ
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Solution for (1.) in Exercise 10

∫ 1

0

∫ √1−x2
0

x y dy dx

or

∫ 1

0

∫ √1−y2

0
x y dx dy
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Solution for (2.) in Exercise 10

∫ 2

0

∫ x

0
y2(x2 + y2)dy dx

or

∫ 2

0

∫ 2

y
y2(x2 + y2)dx dy
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Solution for (3.) in Exercise 10

∫ 3

0

∫ 4

0
(x2 + y2)3dy dx

or

∫ 4

0

∫ 3

0
(x2 + y2)3dx dy
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Exercises

Exercise 11.

Set up (do not evaluate) polar integrals to find the area of the region cut
from the first quadrant by the cardioid r = 1 + sin θ in the following orders
of integration.

(a) dr dθ (b) dθ dr .
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Solution for the Exercise 11

(a)

Area =

∫ π/2

0

∫ 1+sin θ

0
r dr dθ.

(b)

Area =

∫ 1

0

∫ π/2

0
r dθ dr +

∫ 2

1

∫ π/2

sin−1(r−1)
r dθ dr .
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Area in Polar Coordinates

Exercise 12.

1. Find the area of the region cut from the first quadrant by the curve
r = 2(2− sin 2θ)1/2.

2. Cardioid overlapping a circle : Find the area of the region that lies
inside the cardioid r = 1 + cos θ and outside the circle r = 1.

3. One leaf of a rose : Find the area enclosed by one leaf of the rose
r = 12 cos 3θ.

4. Snail shell : Find the area of the region enclosed by the positive
x-axis and spiral r = 4θ/3, 0 ≤ θ ≤ 2π. The region looks like a snail
shell.

5. Cardioid in the first quadrant : Find the area of the region cut from
the first quadrant by the cardioid r = 1 + sin θ.

6. Overlapping cardioids : Find the area of the region common to the
interiors of the cardioids r = 1 + cos θ and r = 1− cos θ.
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Solution for the Exercise 12

1.

∫ x/2

0

∫ 2
√
2−sin 2θ

0
r dr dθ = 2

∫ x/2

0
(2− sin 2θ)dθ = 2(π − 1)

2. A = 2

∫ x/2

0

∫ 1+cos θ

1
r dr dθ =

∫ x/2

0
(2 cos θ + cos2 θ)dθ =

8 + π

4

3. A = 2

∫ x/6

0

∫ 12 cos 3θ

0
r dr dθ = 144

∫ x/6

0
cos2 3θ dθ = 12π

4. A =

∫ 2x

0

∫ 4θ/3

0
r dr dθ =

8

9

∫ 2x

0
θ2 dθ =

64π4

27

5. A =

∫ x/2

0

∫ 1+sin θ

0
r dr dθ =

1

2

∫ x/2

0

(
3

2
+ 2 sin θ −

cos 2θ

2

)
dθ =

3θ

8
+ 1

6. A = 4

∫ x/2

0

∫ 1−cos θ

0
r dr dθ = 2

∫ x/2

0

(
3

2
− 2 cos θ +

cos 2θ

2

)
dθ =

3π

2
− 4
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Average values

Exercise 13.

In polar coordinates, the average value of a function over a region R is
given by 1

Area(R)

∫∫
R

f (r , θ)r dr dθ.

1. Average height of a hemisphere : Find the average height of the
hemispherical surface z =

√
a2 − x2 − y2 above the disk

x2 + y2 ≤ a2 in the xy-plane.

2. Average height of a cone : Find the average height of the (single)
cone z =

√
x2 + y2 above the disk x2 + y2 ≤ a2 in the xy-plane.

3. Average distance from interior of disk to center : Find the average
distance from a point P(x , y) in the disk x2 + y2 ≤ a2 to the origin.

4. Average distance squared from a point in a disk to a point in its
boundary : Find the average value of the square of the distance
from the point P(x , y) in the disk x2 + y2 ≤ 1 to the boundary point
A(1, 0).
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Solution for the Exercise 13

1. average=
4

πa2

∫ x/2

0

∫ a

0
r
√

a2 − r2dr dθ =
4

3πa2

∫ x/2

0
a3dθ =

2a

3

2. average=
4

πa2

∫ x/2

0

∫ a

0
r2dr dθ =

4

3πa3

∫ x/2

0
a3dθ =

2a

3

3. average=
1

πa2

∫ a

−a

∫ √a2−x2

√
a2−x2

√
x2 + y2dy dx =

1

πa2

∫ 2x

0

∫ a

0
r2dr dθ =

a

3π

∫ 2x

0
dθ =

2a

3

4. average=
1

π

∫
R

∫
[(1− x)2 + y2]dy dx =

1

π

∫ 2x

0

∫ 1

0
[(1− r cos θ)2 + r2 sin2 θ]r dr dθ =

1

π

∫ 2x

0

∫ 1

0
(r3−2r2 cos θ+ r)dr dθ =

1

π

∫ 2x

0

(
3

4
−

2 cos θ

3

)
dθ =

1

π

[3
4
θ−

2 sin θ

3

]2x
0

=
3

2
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Exercises

Exercise 14.

1. Converting to a polar integral : Integrate
f (x , y) = [ln(x2 + y2)]/

√
x2 + y2 over the region 1 ≤ x2 + y2 ≤ e.

2. Converting to a polar integral : Integrate
f (x , y) = [ln(x2 + y2)]/(x2 + y2) over the region 1 ≤ x2 + y2 ≤ e2.

3. Volume of noncircular right cylinder : The region that lies inside
the cardioid r = 1 + cos θ and outside the circle r = 1 is the base of a
solid right cylinder. The top of the cylinder lies in the plane z = x.
Find the cylinder’s volume.

4. Volume of noncircular right cylinder : The region enclosed by the
lemniscate r2 = 2 cos 2θ is the base of a solid right cylinder whose top
is bounded by the sphere z =

√
2− r2. Find the cylinder’s volume.
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Solution for the Exercise 14

1.

∫ 2x

0

∫ √e

1

(
ln r2

t

)
r dr dθ =

∫ 2x

0

∫ √e

1
2 ln r dr dθ = 2

∫ 2x

0
[r ln r − r ]

e
√
e

1 dθ =

2

∫ 2x

0

√
e[(

1

2
− 1) + 1]dθ = 2π(2−

√
e)

2.

∫ 2x

0

∫ e

1

(
ln r2

r

)
dr dθ =

∫ 2x

0

∫ e

1

(
2 ln r

r

)
dr dθ =

∫ 2x

0
[(ln r)2]e1dθ =

∫ 2x

0
dθ = 2π

3. V = 2−
∫ x/2

0

∫ 1+cos θ

1
r2 cos θdr dθ =

2

3

∫ x/2

0
(3 cos2θ + 3 cos3 θ + cos4 θ)dθ =

2

3

[15θ
8

+ sin 2θ + 3 sin θ − sin3 θ +
sin 4θ

32

]x/2
0

=
4

3
+

5π

8

4. V = 4

∫ x/4

0

∫ √2 cos 2θ

0
r
√

2− r2dr dθ = −
4

3

∫ x/4

0
[(2−2 cos 2θ)3/2−23/2]dθ =

2π
√
2

3
−

32

3

∫ x/4

0
(1− cos2 θ) sin θ dθ =

2π
√
2

3
−

32

3

[ cos3 θ
3
− cos θ

]
]
x/4
0 =

6π
√
2 + 40

√
2− 64

9
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Theorem 1 (Separation of Variables for Iterated Integrals).

Let g(x) be a continuous function on the interval [a, b] on the x-axis and h(y) be a continuous
function on the integral [c, d ] on the y-axis. Then f (x , y) = g(x)h(y) is a continuous function
on the rectangle D = [a, b]× [c, d ] and

∫∫
D
f (x , y) dA =

(∫ b

a
g(x) dx

)(∫ d

c
h(y) dy

)
.

Exercise 15.

(a) The usual way to evaluate the improper integral I =
∫∞
0 e−x2 dx is first to calculate its

square:

I 2 =

(∫ ∞
0

e−x2 dx

)(∫ ∞
0

e−y2 dy

)
=

∫ ∞
0

∫ ∞
0

e−(x2+y2) dx dy .

Evaluate the last integral using polar coordinates and solve the resulting equation for I .

(b) Evaluate

lim
x→∞

erf (x) = lim
x→∞

∫ x

0

2e−t2

√
π

dt.
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Solution for the Exercise 15

(a)

I 2 =

∫ ∞
0

∫ ∞
0

e−(x2+y2)dx dy

=

∫ x/2

0

∫ ∞
0

(
e−r2

)
r dr dθ

=

∫ x/2

0

[
lim

b→∞

∫ ∞
0

re−r2dr
]
dθ

= −
1

2

∫ x/2

0
lim

b→∞

(
e−b2 − 1

)
dθ

=
1

2

∫ x/2

0
dθ =

π

4
.

Hence I =
√
π
2
.

(b) lim
x→∞

∫ x

0

2e−t2

√
π

dt =
2
√
π

∫ ∞
0

e−t2dt =

(
2
√
π

)(√
π

2

)
= 1, from part (a).
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Converting to polar integrals

Exercise 16.

Converting to a polar integral : Evaluate the integral∫ ∞
0

∫ ∞
0

1

(1 + x2 + y2)2
dx dy .
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Solution for the Exercise 16

∫ ∞
0

∫ ∞
0

1

(1 + x2 + y2)2
dx dy =

∫ x/2

0

∫ ∞
0

r

(1 + r2)2
dr dθ

=
π

2
lim
b→∞

∫ b

0

r

(1 + r2)2
dr

=
π

4
lim
b→∞

[
− 1

1 + r2
]b
0

=
π

4
lim
b→∞

(
1− 1

1 + b2

)
=
π

4
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Exercises

Exercise 17.

1. Existence : Integrate the function f (x , y) = 1/(1− x2 − y2) over
the disk x2 + y2 ≤ 3/4. Does the integral of f (x , y) over the disk
x2 + y2 ≤ 1 exist? Give reasons for your answer.

2. Area : Suppose that the area of a region in the polar coordinate
plane is

A =

∫ 3π/4

π/4

∫ 2 sin θ

csc θ
r dr dθ.

Sketch the region and find its area.
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Solution for (1.) in Exercise 17

Over the disk x2 + y2 ≤ 3
4
,

∫∫
R

1

1− x2 − y2
dA =

∫ 2x

0

∫ √3/2

0

r

1− r2
dr dθ

=

∫ 2x

0

[
−

1

2
ln (1− r2)

]√3/2

0
dθ

=

∫ 2x

0

(
−
1

2
ln

1

4

)
dθ

= (ln 2)

∫ 2x

0
dθ = π ln 4.
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Solution for (1.) in Exercise 17 (contd...)

Over the disk x2 + y2 ≤ 1,

∫∫
R

1

1− x2 − y2
dA =

∫ 2x

0

∫ 1

0

r

1− r2
dr dθ

=

∫ 2x

0

[
lim
a→1

∫ a

0

r

1− r2
dr
]
dθ

=

∫ 2x

0
lim
a→1

[−
1

2
ln(1− a2)]dθ

= 2π · lim
a→1

[−
1

2
ln(1− a2)] = 2π.∞

so the integral does not exist over x2 + y2 ≤ 1.
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Solution for (2.) in Exercise 17

A =

∫ 3x/4

x/4

∫ 2 sin θ

csc θ
r dr dθ

=
1

2

∫ 3x/4

x/4
(4 sin2 θ − csc2 θ)dθ

=
1

2
[2θ − sin 2θ + cot θ]

3x/4
x/4

=
π

2
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Exercises

Exercise 18.

1. Area formula in polar coordinates : Use the double integral in polar
coordinates to derive the formula

A =

∫ β

α

1

2
r2 dθ

for the area of the fan-shaped region between the origin and polar
curve r = f (θ), α ≤ θ ≤ β.

2. Average distance to a given point inside a disk : Let P0 be a point
inside a circle of radius a and let h denote the distance from P0 to the
center of the circle. Let d denote the distance from an arbitrary point
P at P0. Find the average value of d2 over the region enclosed by the
circle. (Hint: Simplify your work by placing the center of the circle at
the origin and P0 on the x-axis.)
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Solution for the Exercise 18

1. The area in polar coordinates is given by

A =

∫ β

α

∫ f [θ]

0
r dr dθ =

∫ β

α

[ r2
2

]β
α
dθ =

1

2

∫ β

α
f 2(θ)dθ =

∫ β

α

1

2
r2dθ, where r = f (θ).

2.

average =
1

πa2

∫ 2x

0

∫ a

0
[(r cos θ − h)2 + r2 sin2 θ]r dr dθ

=
1

πa2

∫ 2x

0

∫ a

0
(r3 − 2r2h cos θ + rh2)dr dθ

=
1

πa2

∫ 2x

0

(
a4

4
−

2a3h cos θ

3
+

a2h2

2

)
dθ

=
1

π

∫ 2x

0

(
a2

4
−

2ah cos θ

3
+

h2

2

)
dθ

=
1

π

[a2θ
4
−

2ah sin θ

3
+

h2θ

2

]2x
0

=
1

2
(a2 + 2h2)
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